Abstract

We present in this study an algorithmic framework of an intelligent scheduling system that aims to provide an optimum planning for the production process of cutting tools taking into consideration the constraining conditions such as production characteristics, capacity, and performance criteria. Once blunt, cutting tools are sent to the sharpening service composed of parallel machines capable of sharpening more than one tool at the same time. After sharpening, tools are sent back to the departments of origins to be used in other production processes. Thus, any delay in the sharpening service provokes delays in other departments. We develop first a genetic algorithm enhanced by a dynamic programming procedure capable of optimally scheduling a given job sequence. Then we develop a branch and bound method that emulates at each node possible decisions based on a postpone or schedule strategy. Numerical results show that both methods give high quality solutions for the scheduling of tool sharpening operations. Beside the minimization of total tardiness, many other types of decision making related to minimal operation time of a sharpening service, minimal amount of cutting tool inventory and the number of required sharpening machines can be deduced thanks to applying our models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.