Abstract

Directional sensors are gaining importance due to applications, including surveillance, detection, and tracking. Such sensors have a limited field of view and a discrete set of directions they can be pointed to. The directional sensor control problem (DSCP) consists in assigning a direction of view to each sensor. The location of the targets is known with uncertainty given by a joint a priori Gaussian distribution, while the sensor locations are known exactly. In this paper, we study the exact and heuristic approaches for the DSCP with the goal of maximizing information gain on the location of a given set of immobile target objects. In particular, we propose an exact mixed integer convex programming (MICP) formulation to be solved by a black-box MICP solver and several metaheuristic approaches based on local search. A computational evaluation shows the very good performance of both methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.