Abstract

This paper addresses scheduling a set of jobs with release dates and deadlines on a set of unrelated parallel machines to minimize some minmax objective. This family of problems has a number of applications, e.g., in discrete berth allocation and truck scheduling at cross docks. We present a novel exact algorithm based on logic-based Benders decomposition as well as a heuristic based on a set partitioning reformulation of the problem. We show how our approaches can be used to deal with additional constraints and various minmax objectives common to the above-mentioned applications, solving a broad class of parallel machine scheduling problems. In a series of computational tests both on instances from the literature and on newly generated ones, our exact method is shown to solve most problems within a few minutes to optimality, while our heuristic can solve particularly challenging instances with tight time windows well in acceptable time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.