Abstract

The allocation of experts to programmer teams, which meet constraints on professional competences related to programming technologies, languages and tools an IT project specifies is a hard combinatorial problem. This paper solves the problem of forming the maximum number of teams whose experts meet all the constraints within each team. It develops and compares two algorithms: a heuristic greedy and exact optimal. The greedy algorithm iteratively solves the set cover problem on a matrix of expert competences until can create the next workable team of remaining experts. The paper proves that the allocation greedy algorithm is not accurate even if the set cover algorithm is exact. We call the allocation algorithm as double greedy if the set cover algorithm is greedy. The exact algorithm we propose finds optimal solution in three steps: generating a set of all non-redundant teams, producing a graph of team’s independency, and searching for a maximum clique in the graph. The algorithm of generating the non-redundant teams traverses a search tree constructed in such a way as to guarantee the creation of all non-redundant teams and absorbing all redundant teams. The edges of the non-redundant team independency graph connect teams that have no common expert. The maximum clique search algorithm we propose accounts for the problem and graph features. Experimental results show that the exact algorithm is a reference one, and the double-greedy algorithm is very fast and can yield suboptimal solutions for large-size allocation problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call