Abstract

A new analytical methodology is introduced here for fixed-point error analysis of various Toeplitz solving algorithms. The method is applied to the very useful Schur algorithm and the lately introduced split Schur (1918, 1986) algorithm. Both exact and first order error analysis are provided in this paper. The theoretical results obtained are consistent with experimentation. Besides the intrinsic symmetry of the error propagation recursive formulae, the technique presented here is capable of explaining many practical situations. For signals having a small eigenvalue spread the Schur algorithm behaves better than the split Schur in the fixed-point environment. The intermediate coefficients of the split Schur algorithm leading to the PARCOR's cannot serve as alternatives to the reflection coefficients in error sensitive applications. It is demonstrated that the error-weight vectors of the Schur propagation mechanism follow Levinson-like (second order) recursions, while the same vectors of the split Schur propagation mechanism follow split Levinson-like (third-order) recursions.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.