Abstract

We consider a process called the Group Network Formation Game, which represents the scenario when strategic agents are building a network together. In our game, agents can have extremely varied connectivity requirements, and attempt to satisfy those requirements by purchasing links in the network. We show a variety of results about equilibrium properties in such games, including the fact that the price of stability is 1 when all nodes in the network are owned by players, and that doubling the number of players creates an equilibrium as good as the optimum centralized solution. For the general case, we show the existence of a 2-approximate Nash equilibrium that is as good as the centralized optimum solution, as well as how to compute good approximate equilibria in polynomial time. Our results essentially imply that for a variety of connectivity requirements, giving agents more freedom can paradoxically result in more efficient outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.