Abstract

Let x = {X n } n IN be a hidden process, y = {y n } n IN an observed process and r = {r n } n IN some auxiliary process. We assume that t = {t n } n IN with t n = (x n , r n , y n-1 ) is a (Triplet) Markov Chain (TMC). TMC are more general than Hidden Markov Chains (HMC) and yet enable the development of efficient restoration and parameter estimation algorithms. This paper is devoted to Bayesian smoothing algorithms for TMC. We first propose twelve algorithms for general TMC. In the Gaussian case, they reduce to a set of algorithms which includes, among other solutions, extensions to TMC of classical Kalman-like smoothing algorithms such as the RTS algorithms, the Two-Filter algorithm or the Bryson and Frazier algorithm. We finally propose particle filtering (PF) approximations for the general case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.