Abstract

AbstractWhen a large collection of objects (e.g., robots, sensors, etc.) has to be deployed in a given environment, it is often required to plan a coordinated motion of the objects from their initial position to a final configuration enjoying some global property. In such a scenario, the problem of minimizing the distance travelled, and therefore energy consumption, is of vital importance. In this paper we study several motion planning problems that arise when the objects must be moved on a network, in order to reach certain goals which are of interest for several network applications. Among the others, these goals include broadcasting messages and forming connected or interference-free networks. We study these problems with the aim to minimize a number of natural measures such as the average/overall distance travelled, the maximum distance travelled, or the number of objects that need to be moved. To this respect, we provide approximability and inapproximability results, most of which are tight.KeywordsApproximation AlgorithmPolynomial TimeBipartite GraphVertex CoverApproximate AlgorithmThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call