Abstract

Exact analytical solutions for two-dimensional advection–dispersion equation (ADE) in cylindrical coordinates subject to the third-type inlet boundary condition are presented in this study. The finite Hankel transform technique in combination with the Laplace transform method is adopted to solve the two-dimensional ADE in cylindrical coordinates. Solutions are derived for both continuous input and instantaneous slug input. The developed analytical solutions are compared with the solutions for first-type inlet boundary condition to illustrate the influence of the inlet condition on the two-dimensional solute transport in a porous medium system with a radial geometry. Results show significant discrepancies between the breakthrough curves obtained from analytical solutions for the first-type and third-type inlet boundary conditions for large longitudinal dispersion coefficients. The developed solutions conserve the solute mass and are efficient tools for simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment or an in situ infiltration test with a tracer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.