Abstract

In this Letter, we give an analytical quantum description of a nonequilibrium polariton Bose-Einstein condensate (BEC) based on the solution of the master equation for the full polariton density matrix in the limit of fast thermalization. We find the density matrix of a nonequilibrium BEC, that takes into account quantum correlations between all polariton states. We show that the formation of BEC is accompanied by the build-up of cross-correlations between the ground state and the excited states reaching their highest values at the condensation threshold. Despite the nonequilibrium nature of polariton systems, we show the average population of polariton states exhibits the Bose-Einstein distribution with an almost zero effective chemical potential above the condensation threshold similar to an equilibrium BEC. We demonstrate that above threshold the effective temperature of polaritons drops below the reservoir temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.