Abstract

A novel generic memristor, dubbed the 6-lobe Chua corsage memristor, is proposed with its nonlinear dynamical analysis and physical realization. The proposed corsage memristor contains four asymptotically stable equilibrium points on its complex and diversified dynamic routes which reveals a 4-state nonlinear memory device. The higher degree of versatility of its dynamic routes reveal that the proposed memristor has a variety of dynamic paths in response to different initial conditions and exhibits a highly nonlinear contiguous DC V-I curve. The DC V-I curve of the proposed memristor is endowed with an explicit analytical parametric representation. Moreover, the derived three formulas, exponential trajectories of state xnt, time period tfn, and minimum pulse amplitude VA, are required to analyze the movement of the state trajectories on the piecewise linear (PWL) dynamic route map (DRM) of the corsage memristor. These formulas are universal, that is, applicable to any PWL DRM curves for any DC or pulse input and with any number of segments. Nonlinear dynamics and circuit and system theoretic approach are employed to explain the asymptotic quad-stable behavior of the proposed corsage memristor and to design a novel real memristor emulator using off-the-shelf circuit components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.