Abstract
This paper studies exact algorithms for the Maximum Induced Matching problem, in which an n-vertex graph is given and we are asked to find a set of maximum number of edges in the graph such that no pair of edges in the set have a common endpoint or are adjacent by another edge. This problem has applications in many different areas. We give several structural properties of the problem and show that the problem can be solved in O⁎(1.4231n) time and polynomial space or O⁎(1.3752n) time and exponential space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.