Abstract

This paper studies a generalization of the order acceptance and scheduling problem in a single-machine environment where a pool consisting of firm planned orders as well as potential orders is available from which an over-demanded company can select. The capacity available for processing the accepted orders is limited and each order is characterized by a known processing time, delivery date, revenue and a weight representing a penalty per unit-time delay beyond the delivery date. We prove that the existence of a constant-factor approximation algorithm for this problem is unlikely. We propose two linear formulations that are solved using an IP solver and we devise two exact branch-and-bound procedures able to solve instances with up to 50 jobs within reasonable CPU times. We compare the efficiency and quality of the results obtained using the different solution approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.