Abstract

We consider a problem of 2-partitioning a finite sequence of points in Euclidean space into two clusters of the given sizes with some additional constraints. The solution criterion is the minimum of the sum (over both clusters) of weighted intracluster sums of squared distances between the elements of each cluster and its center. The weights of the intracluster sums are equal to the cardinalities of the desired clusters. The center of one cluster is given as input, while the center of the other one is unknown and is determined as a geometric center, i.e. as a point of space equal to the mean of the cluster elements. The following constraints hold: the difference between the indices of two subsequent points included in the first cluster is bounded from above and below by given some constants. It is shown that the considered problem is the strongly NP-hard one. An exact algorithm is proposed for the case of integer-valued input of the problem. This algorithm has a pseudopolynomial running time if the space dimension is fixed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call