Abstract

Exact 3D path generation is a fundamental problem of designing a mechanism to make a point exactly move along a prescribed 3D path , driven by a single actuator. Existing mechanisms are insufficient to address this problem. Planar linkages and their combinations with gears and/or plate cams can only generate 2D paths while 1-DOF spatial linkages can only generate 3D paths with rather simple shapes. In this paper, we present a new 3D cam-linkage mechanism, consisting of two 3D cams and five links, for exactly generating a continuous 3D path. To design a 3D cam-linkage mechanism, we first model a 3-DOF 5-bar spatial linkage to exactly generate a prescribed 3D path and then reduce the spatial linkage's DOFs from 3 to 1 by composing the linkage with two 3D cam-follower mechanisms. Our computational approach optimizes the 3D cam-linkage mechanism's topology and geometry to minimize the mechanism's total weight while ensuring smooth, collision-free, and singularity-free motion. We show that our 3D cam-linkage mechanism is able to exactly generate a continuous 3D path with arbitrary shape and a finite number of C 0 points, evaluate the mechanism's kinematic performance with 3D printed prototypes, and demonstrate that the mechanism can be generalized for exact 3D motion generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.