Abstract

The commensal yeast Candida albicans is a major cause of invasive fungal infections. Despite treatment with antifungal agents, the mortality rate attributed to these types of infection is high. Although numerous cases have been reported regarding a poor outcome for patients with bacterial and C. albicans coinfection, the mechanisms by which the coinfecting bacteria exacerbate the C. albicans infection remain elusive. We evaluated how glycolipid-mediated activation of invariant natural killer T (iNKT) cells affects the clearance of C. albicans. Surprisingly, C. albicans-infected, glycolipid-treated mice exhibited significantly lower survival rates, increased fungal burden, and higher interleukin (IL)-6 production in the kidneys compared with control mice. Glycolipid-induced exacerbation of C. albicans infection was not observed in interferon-gamma knockout (IFN-γKO) mice. In the C. albicans-infected, glycolipid-treated mice, the number of neutrophils in the blood and bone marrow dramatically decreased in an IFN-γ-dependent manner. Furthermore, mice that were coinfected with C. albicans and nonfermentative gram-negative commensal bacteria exhibited increased fungal burden and inflammatory cytokine production in the kidneys that were dependent on IFN-γ and iNKT cells. Our results indicate that coinfecting commensal bacteria exacerbate C. albicans infection through IFN-γ produced, in part, by iNKT cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.