Abstract

Due to the exponential growth of online information, the ability to efficiently extract the most informative content and target specific information without extensive reading is becoming increasingly valuable to readers. In this paper, we present 'EXABSUM,' a novel approach to Automatic Text Summarization (ATS), capable of generating the two primary types of summaries: extractive and abstractive. We propose two distinct approaches: (1) an extractive technique (EXABSUMExtractive), which integrates statistical and semantic scoring methods to select and extract relevant, non-repetitive sentences from a text unit, and (2) an abstractive technique (EXABSUMive), which employs a word graph approach (including compression and fusion stages) and re-ranking based on keyphrases to generate abstractive summaries using the source document as an input. In the evaluation conducted on multi-domain benchmarks, EXABSUM outperformed extractive summarization methods and demonstrated competitiveness against abstractive baselines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.