Abstract

To explore the preventive and therapeutic antitumor effects of nicotine-treated immature dendritic cells (imDC). First, bone marrow-derived imDCs were stimulated with nicotine in vitro, and nicotinic acetylcholine receptor, costimulator molecules, chemokine receptor, and endocytosis ability of imDCs were detected by flow cytometry. Second, the DC-dependent antigen-specific T-cell proliferation, CTL priming, and interleukin-12 secretion were determined by flow cytometry, enzyme-linked immunospot assay, and ELISA, respectively. Finally, preventive and therapeutic antitumor effects of such imDCs were determined by i.p. transfer against tumor challenge or implantation in mice. Nicotine could up-regulate expression of nicotinic acetylcholine receptor, costimulatory molecules, such as CD80, CD86, and CD40, adhesion molecule CD11b, and chemokine receptor CCR7 and enhance endocytosis ability of imDCs. In addition, nicotine could promote imDC-dependent CTL priming and interleukin-12 secretion in vitro. Most importantly, systemic transfer of ex vivo nicotine-stimulated imDCs could reveal preventive and therapeutic effect on tumor development. Ex vivo nicotine stimulation can significantly improve the efficacy of imDCs for adaptive therapy of cancer and nicotine-treated imDCs may be considered as a potential candidate for preventive and therapeutic tumor vaccination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.