Abstract

Phenylboronic acid (PBA) has been highly acknowledged as a significant cancer recognition moiety in sialic acid-overexpressing cancer cells. In this investigation, lipid-mediated biomaterial integrated PBA molecules onto the surface of natural killer (NK) cells to make a receptor-mediated immune cell therapeutic module. Therefore, a 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE) lipid-conjugated di-PEG-PBA (DSPEPEG-di(PEG-PBA) biomaterial was synthesized. The DSPEPEG-di(PEG-PBA) biomaterial exhibited a high affinity for sialic acid (SA), confirmed by fluorescence spectroscopy at pH 6.5 and 7.4. DSPEPEG-di(PEG-PBA) was successfully anchored onto NK cell surfaces (PBA-NK), and this biomaterial maintains intrinsic properties such as viability, ligand availability (FasL & TRAIL), and cytokine secretion response to LPS. The anticancer efficacy of PBA-NK cells was evaluated against 2D cancer cells (MDA-MB-231, HepG2, and HCT-116) and 3D tumor spheroids of MDA-MB-231 cells. PBA-NK cells exhibited greatly enhanced anticancer effects against SA-overexpressing cancer cells. Thus, PBA-NK cells represent a new anticancer strategy for cancer immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.