Abstract

BackgroundTransection of the canine cranial cruciate ligament (CCL) is a well-established osteoarthritis (OA) model. The effect of CCL loss on contact pressure and joint alignment has not been quantified for stifle loading in standing. The purposes of the study were to measure femorotibial contact areas and stresses and joint alignment following transection of the CCL in an ex vivo model. We hypothesized that transection of the CCL would lead to abnormal kinematics, as well as alterations in contact mechanics of the femorotibial joint.Methodology/Principal FindingsEight canine hindlimbs were tested in a servo-hydraulic materials testing machine using a custom made femoral jig. Contact area and pressure measurements, and femorotibial rotations and translations were measured in the normal and the CCL–deficient stifle in both standing and deep flexion angles.We found that at standing angle, transection of the CCL caused cranial translation and internal rotation of the tibia with a concurrent caudal shift of the contact area, an increase in peak pressure and a decrease in contact area. These changes were not noted in deep flexion. At standing, loss of CCL caused a redistribution of the joint pressure, with the caudal region of the compartment being overloaded and the rest of the joint being underloaded.ConclusionIn the Pond-Nuki model alterations in joint alignment are correlated with shifting of the contact points to infrequently loaded areas of the tibial plateau. The results of this study suggest that this cadaveric Pond-Nuki model simulates the biomechanical changes previously reported in the in-vivo Pond-Nuki model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.