Abstract

Metabolic diseases such as diabetes, pre-diabetes, non-alcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH) are becoming increasingly common. Ex vivo liver perfusions allow for a comprehensive analysis of liver metabolism using nuclear magnetic resonance (NMR), in nutritional conditions that can be rigorously controlled. As in silico simulations remain a primarily theoretical means of assessing hormone actions and the effects of pharmaceutical intervention, the perfused liver remains one of the most valuable test beds for understanding hepatic metabolism. As these studies guide basic insights into hepatic physiology, results must be accurate and reproducible. The greatest factor in the reproducibility of ex vivo hepatic perfusion is the quality of surgery. Therefore, we have introduced an organized and streamlined method to perform ex vivo mouse liver perfusions in the context of in situ NMR experiments. We also describe a unique application and discuss common issues encountered in these studies. The overall purpose is to provide an uncomplicated guide to a technique we have refined over several years that we deem the golden standard for obtaining reproducible results in hepatic resections and perfusions in the context of in situ NMR experiments. The distance to the center of the field for the magnet as well as the inaccessibility of the tissue to intervention during the NMR experiment makes our methods novel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.