Abstract
Studies have reported the application of conventional optical coherence tomography (OCT) in the diagnosis of basal cell carcinoma (BCC). The new OCT provides cellular details similar to those in pathology slides and may reduce user learning time. This study aimed to demonstrate the quality of ex vivo full-field cellular-resolution OCT images and compare the diagnostic accuracy between physicians with varying pathology experience. Sixty histologically confirmed BCCs were selected. Tissue samples were sectioned and scanned using OCT, and their features were compared with those of hematoxylin and eosin (H&E)-stained sections. Thirty images were selected for the test administered to dermatology residents, dermatopathology fellows, and board-certified general pathologists without any OCT experience. The pretest learning included a 3-min instruction and 10-min self-study of four BCC variants. Histopathological BCC and normal histological features were clearly recognizable on the OCT images. The pathological BCC features observed in the OCT images correlated with those found in the H&E-stained sections. Seven participants completed the test. The correct answer rates of the residents, fellows, and pathologists were 71%, 68%, and 83% for BCC and 44%, 57%, and 57% for the BCC subtypes, respectively. All the participants identified BCC in >70% cases with a learning time of only 13minutes. The results indicated that cellular-resolution OCT provided high-quality images similar to the conventional pathology slides. Pathology experience did reflect the diagnostic accuracy. However, a longer training time is still needed at all levels to recognize the BCC subtypes correctly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.