Abstract
Peripheral artery disease (PAD) results from the buildup of atherosclerotic plaque in the arterial wall, can progress to severe ischemia and lead to tissue necrosis and limb amputation. We evaluated a means of assessing PAD mechanics ex vivo using ten human peripheral arteries with PAD. Pressure-inflation testing was performed at six physiological pressure intervals ranging from 10 to 200 mmHg. These vessels were imaged with IVUS-VH to determine plaque composition and change in vessel structure with pressure. Statistical analysis was performed to determine which plaque structures and distributions of these structures had the greatest influence on wall deformation. We found that fibrous plaque, necrotic core, and calcification had a statistically significant effect on all variables (p < 0.05). The presence of large concentrations of fibrous plaque was linked to reduced vessel compliance and ellipticity, which could lead to stent fractures and restenosis. For the plaque distribution we found that clustered necrotic core increased overall compliance while clustered calcification decreased overall compliance. The effect of plaque distribution on vessel wall deformation must be considered equally important to plaque concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.