Abstract

Despite advancements in contemporary therapies, cardiovascular disease from atherosclerosis remains a leading cause of mortality worldwide. Supported lipid bilayers (SLBs) are membrane interfaces that can be constructed with varying lipid compositions. Herein, we use a solvent-assisted lipid bilayer (SALB) construction method to build SLB membranes with varying cholesterol compositions to create a lipid-sterol interface atop a piezoelectric sensor. These cholesterol-laden SLBs were utilized to investigate the mechanisms of various cholesterol-lowering drug molecules. Within a flow-cell, membranes with varying cholesterol content were exposed to cyclodextrins 2-hydroxypropyl-beta-cyclodextrin (HPβCD) and methyl-beta-cyclodextrin (MβCD). Quartz-crystal microgravimetry with dissipation monitoring (QCM-D) enabled the collection of in vitro, real-time changes in relative areal mass and dissipation. We define the cholesterol desorbing competency of a cyclodextrin species via measures of the rate of cholesterol removal, the rate of the transfer of membrane-bound cholesterol to drug-complexed cholesterol, and the binding strength of the drug to the cholesterol-ladened membrane. Desorption data revealed distinct cholesterol removal kinetics for each cyclodextrin while also supporting a model for the lipid-cholesterol-drug interface. We report that MβCD removes a quantity of cholesterol 1.61 times greater, with a speed 2.12 times greater, binding affinity to DOPC lipid interfaces 1.97 times greater, and rate of internal cholesterol transfer 3.41 times greater than HPβCD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.