Abstract

Haematopoiesis, the process of blood production, occurs from a tiny contingent of haematopoietic stem cells (HSC) in highly specialised three-dimensional niches located within the bone marrow. When haematopoiesis is replicated using in vitro two-dimensional culture, HSCs rapidly differentiate, limiting self-renewal. Emulsion-templated highly porous polyHIPE foam scaffolds were chosen to mimic the honeycomb architecture of human bone. The unmodified polyHIPE material supports haematopoietic stem and progenitor cell (HSPC) culture, with successful culture of erythroid progenitors and neutrophils within the scaffolds. Using erythroid culture methodology, the CD34+ population was maintained for 28 days with continual release of erythroid progenitors. These cells are shown to spontaneously repopulate the scaffolds, and the accumulated egress can be expanded and grown at large scale to reticulocytes. We next show that the polyHIPE scaffolds can be successfully functionalised using activated BM(PEG)2 (1,8-bismaleimido-diethyleneglycol) and then a Jagged-1 peptide attached in an attempt to facilitate notch signalling. Although Jagged-1 peptide had no detectable effect, the BM(PEG)2 alone significantly increased cell egress when compared to controls, without depleting the scaffold population. This work highlights polyHIPE as a novel functionalisable material for mimicking the bone marrow, and also that PEG can influence HSPC behaviour within scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.