Abstract

Adenovirus-mediated CTLA4Ig gene transfer has been reported to enhance graft survival in several rodent transplantation models. In this study, we investigated the efficacy of ex vivo and systemic transfer of the CTLA4Ig gene by adenoviral vectors in pancreatic islet allo-transplantation. Islet grafts from BN rats were transplanted to chemically induced diabetic LEW rats. First, ex vivo CTLA4Ig gene transfer into isolated islets was performed prior to transplantation. Survival of transduced grafts under the kidney capsule was slightly prolonged (8.6±1.3 days) compared with survival of untransduced grafts (6.7±1.2 days); when combined with a short course of FK506, graft survival was further extended (32.6±10.7 days vs. 13.7±1.0 days with FK506 alone). Secondly, systemic gene transfer was accomplished by intravenous administration immediately after the transplantation procedure. In these animals, islet grafts under the kidney capsule survived longer (15.2±3.3 days) than in controls (6.7±1.2 days), and when FK506 was administered perioperatively, all the islet grafts survived for more than 100 days. In systemically transduced recipients, the survival of islet grafts transplanted into the liver was not significantly different from that of the grafts placed under the kidney capsule. In order to examine organ-specific immunogenicity, heterotopic BN cardiac grafts were transplanted to LEW rats intra-abdominally, with the virus transferred systemically as in the islet model. In contrast to the islet grafts, all the cardiac grafts were accepted for longer than 100 days, even without FK506 therapy. Finally, the LEW recipients with long-surviving islet or cardiac grafts were re-transplanted with islet grafts from the same donor strain (BN) on day 100. The second islet grafts survived longer than 100 days in half of the cardiac recipients, but consistently failed in the islet recipients. We conclude that in this transplant model, CTLA4Ig gene transfer and FK506 treatment synergistically improved islet graft survival, systemic transfer of the gene was more effective than ex vivo transfer to the islets, and donor-specific tolerance could not be achieved for islet transplantation but was achieved for cardiac transplantation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.