Abstract

Second-harmonic-generation (SHG) microscopy is an interesting new tool for observing dermal collagen fiber in skin. However, conventional SHG microscopy using a mode-locked Ti:sapphire laser suffers from low penetration depth and a slow image acquisition rate caused by scattering and absorption in tissue, making it difficult to use for in vivo applications on human skin. We develop an SHG microscope equipped with a mode-locked Cr:forsterite laser with a long wavelength and compare its imaging characteristics with that of a Ti:sapphire-laser-based SHG microscope for the measurement of dermal collagen fiber in animal and human skins. The results indicate the suitability of the Cr:forsterite laser-based SHG microscope for in vivo imaging of human skin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call