Abstract

Herpes keratitis is the most common infectious cause of blindness in the developed world. It may be treated by acyclovir (ACV), however this antiviral drug is poorly soluble with low ocular bioavailability requiring high and frequent dosing. Nanostructured lipid carriers (NLCs) were investigated to improve the ocular bioavailability of ACV by enhancing corneal penetration as well as prolonging the exposure of infected cells to the antiviral agent. Cell uptake studies, ex vivo tolerance and cell uptake efficacy as well as in vivo corneal permeation of the developed lipid based formulations were investigated. NLCs were fabricated by the hot microemulsion technique and coated with 0.5% w/v chitosan. NLCs were capable of increasing the cell uptake of encapsulated fluorescein and ACV as examined by fluorescence microscopy and high performance liquid chromatography (HPLC) respectively. When entrapped in NLCs, the antiviral efficacy of ACV was increased by 3.5 fold after 24 hrs of exposure. The in vivo corneal permeation of the formulation was studied on Albino rabbits with NLCs capable of increasing the corneal bioavailability by 4.5 fold when compared to a commercially available ACV ophthalmic ointment. NLCs enhanced the ocular bioavailability and antiviral properties of ACV through cell internalisation, sustained release, and increased corneal permeation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.