Abstract

AbstractAerospace‐grade bismaleimide matrix composites was toughened based on a novel ex situ resin transfer molding (RTM) technique using a special manufactured ES™ carbon fabrics. The toughening mechanism and toughening effect by the technique are studied using thermoplastic PAEK as toughener. Mode I fracture toughness (GIC) of the composites toughened by ex situ RTM technique increased up to three times higher than that of the control system, and Mode II fracture toughness (GIIC) increased two times higher as well. The composite without toughening was denoted as control system. The microstructure revealed that a reaction‐induced phase decomposition and inversion happened in the interlaminar region, which resulted in a particles morphology that showed the thermosetting particles were surrounded with the PAEK phase. The plastic deformation and rupture of the continuous PAEK phase are responsible to the fracture toughness improvement. And the influence of PAEK concentration on toughness improvement was also investigated. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.