Abstract

Both basic oxygen furnace (BOF) slag and cold-rolling wastewater (CRW) exhibiting highly alkaline characteristics require stabilization and neutralization prior to utilization and/or final disposal. Using CO2 from flue gases as the stabilizing and neutralizing agents could also diminish CO2 emissions. In this investigation, ex situ hot stove gas containing 30 vol% CO2 in the steelmaking process was captured by accelerated carbonation of BOF slag coupled with CRW in a rotating packed bed (RPB). The developed RPB process exhibits superior results, with significant CO2 removal efficiency (η) of 96-99% in flue gas achieved within a short reaction time of 1 min at 25 °C and 1 atm. Calcite (CaCO3) was identified as the main product according to XRD and SEM-XEDS observations. In addition, the elimination of lime and Ca(OH)2 in the BOF slag during carbonation is beneficial to its further use as construction material. Consequently, the developed RPB process could capture the CO2 from the flue gas, neutralize the CRW, and demonstrate the utilization potential for BOF slag. It was also concluded that carbonation of BOF slag coupled with CRW in an RPB is a viable method for CO2 capture due to its higher mass transfer rate and CO2 removal efficiency in a short reaction time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.