Abstract

In recent papers, we have described a novel mechanism for strain relaxation of thin films. Because of its strong resemblance to the well known Frank-Read sources of dislocations, it was called the “Modified-Frank-Read” (MFR) mechanism. This process was first observed during the growth of compositionally graded SiGe/Si(001) thin films, where it results in dislocations pile-ups being injected deep into an initially perfect substrate, leaving the topmost part of the film relaxed and nominally defect free. This last observation opens the door to a wide range of electronic applications since it makes it possible to grow electronic grade buffer layers of arbitrary composition and lattice parameter.The exact mechanism of the reproduction of dislocations was identified through tilting experiment and analysis of several compositionally graded SiGe/Si(001) structures. These also provided the important parameters controlling this mode of strain relaxation. We thus demonstrated that the MFR mechanism corresponds to the multiplication of “corner dislocations” (dislocations whose line forms a 90° angle) by simultaneous glide on two (111) planes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.