Abstract
Prolonged hydrothermal treatment for sulfonated poly(ether ether ketone) membranes induces mechanical degradation and developing hydrophilic-hydrophobic phase separation, simultaneously. The enhanced phase separation provides incremental proton conductivity to the membranes, whereas mechanical degradation drastically reduces device stability. On this basis, we describe here the effects of two different ex situ aging processes on sulfonated poly(ether ether ketone) membranes: hydration-dehydration cycling and prolonged hydrothermal treatment. Both aged membranes exhibited enhanced phase separation under the hydrated conditions, as characterized by small angle X-ray scattering. However, when the aged membranes were dried again, the nanostructure of the membranes aged via the hydration-dehydration cycling was recoverable, whereas that of the membranes aged via prolonged hydrothermal treatment was irreversible. Furthermore, the two differently aged membranes showed clear differences in thermal, mechanical, and electrochemical properties. Finally, we implemented both aged membranes in fuel cell application. The sample aged via hydration-dehydration cycling maintained its improved cell performance, whereas the sample aged via hydrothermal treatment showed drastically reduced cell performance after durability test for 50 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.