Abstract

As new technologies emerge is necessary to assess if they can actually contribute to sustainable improvement of industrial processes. Life Cycle Assessment (LCA) is a valuable tool to determine environmental impacts and compare systems. However, this comparison raises challenges when they have different maturity. This paper performs ex-ante LCA of an additive manufacturing (AM) technology, based on a step-wise approach built with parametrized modelling, allowing fair comparison with its conventional counterpart, for the study case of a gearbox component. Results show that AM technology generates higher impacts than conventional manufacturing (CM) casting process, using baseline values. These impacts can be reduced by 94% with best operating performances from literature, with emissions from 4520 to 264 kg CO2 eq./kg piece, and non-significant difference with CM (demonstrated by Monte Carlo sampling). A 58% weight reduction is necessary for the AM process to improves its environmental sustainability. This research provides eco-design recommendations supporting decision making for further development of new technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.