Abstract

Vascular endothelial growth factor (VEGF)-A plays an important role in the pathological angiogenesis that occurs in soft-tissue sarcoma and in about half of Ewing's sarcoma cases, where it is highly overexpressed. EWS/Fli-1 is considered to be a transcriptional activator and to play a significant role in tumorigenesis of Ewing's sarcoma. However, the relationship between EWS/Fli-1 and VEGF-A is still unclear. The aim of this research is to investigate the relationship between EWS/Fli-1 and VEGF-A, and to determine whether small interfering RNA (siRNA)-targeting of VEGF-A can be developed as a novel treatment for Ewing's sarcoma. Knockdown of EWS/Fli-1 using siRNA on a Ewing's sarcoma cell line (A673) suppressed VEGF-A expression, and transfection of EWS/Fli-1 into a human osteosarcoma cell line increased VEGF-A expression. To inhibit VEGF-A secretion from Ewing's sarcoma, we developed a chemically synthesized siRNA that targets VEGF-A. Transfection of the VEGF siRNA into the Ewing's sarcoma cell line significantly suppressed VEGF-A secretion by up to 98% in vitro, compared with a control. In vivo, we established Ewing's sarcoma xenograft models and performed intratumoral injection of the siRNA mixed with atelocollagen. We observed that the inhibition of tumor growth occurs in a dose-dependent manner. Histological examination revealed decreased microvessel density and morphological change around microvessels in the Ewing's sarcoma xenografts treated with the siRNA. It is considered that a combination of chemically synthesized siRNA that targets VEGF-A and atelocollagen might be a novel and effective option for treating Ewing's sarcoma that secretes VEGF-A.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.