Abstract
The statistical properties of control charts are usually evaluated under the assumption that the observations from the process are independent. For many processes however, observations which are closely spaced in time will be correlated. This paper considers EWMA and CUSUM control charts for the process mean when the observations are from an AR(1) process with additional random error. This simple model may be a reasonable model for many processes encountered in practice. The ARL and steady state ARL of the EWMA and CUSUM charts are evaluated numerically using an integral equation approach and a Markov chain approach. The numerical results show that correlation can have a significant effect on the properties of these charts. Tables are given to aid in the design of these charts when the observations follow the assumed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.