Abstract
In this paper, household electricity load profile (LP) clustering problem is addressed. LP clustering analysis has been utilized as predicted end-user LPs for demand or supply management strategies to maintain the stability of the power systems. The consumption dynamics of the LPs are formed by the combinations of technical and social factors. Hence, discovering the dynamic patterns of the LPs has been a challenging problem. For this problem, we have offered successive applications of Sugeno fuzzy-logic (SFL) and self-organizing map neural network (SOMNN) techniques. Firstly, the data sets of the LPs are clustered by fuzzy logic approach by the reference models which are generated with the common family-types per persons. Then, considering the extra input of the weighted occupancy profiles, SOMNN is performed to improve the clustering result according to the dataset. The proposed strategy has been simulated by MATLAB® and the related results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.