Abstract
ABSTRACTExperiments have shown that a thin polymer film subjected to an electrostatic field may lose stability at the polymer-air interface, leading to uniform self-organized pillars emerging out of the film surface. This paper presents a three dimensional dynamic model that accounts for the behavior. Attention is focused on the interplay of the thermodynamic forces and the kinetic processes. The coupled diffusion, viscous flow, and dielectric effect are incorporated into a phase field framework. The semi-implicit Fourier spectral method and the preconditioned biconjugate-gradient method are applied in the simulations for high efficiency and numerical stability. Numerical simulations reveal rich dynamics of the pattern formation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.