Abstract
A complex model for evolving the update strategy of a Particle Swarm Optimisation (PSO) algorithm is described in this paper. The model is a hybrid technique that combines a Genetic Algorithm (GA) and a PSO algorithm. Each GA chromosome is an array encoding a meaning for updating the particles of the PSO algorithm. The Evolved PSO algorithm is compared to several human-designed PSO algorithms by using ten artificially constructed functions and one real-world problem. Numerical experiments show that the Evolved PSO algorithm performs similarly and sometimes even better than the Standard approaches for the considered problems. The Evolved PSO is highly scalable (regarding the size of the problem's input), being able to solve problems having different dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Artificial Intelligence Tools
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.