Abstract

By evolving the N-terminal domain of Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS) that directly interacts with tRNAPyl , a mutant clone displaying improved amber-suppression efficiency for the genetic incorporation of Nϵ -(tert-butoxycarbonyl)-l-lysine threefold more than the wild type was identified. The identified mutations were R19H/H29R/T122S. Direct transfer of these mutations to two other PylRS mutants that were previously evolved for the genetic incorporation of Nϵ -acetyl-l-lysine and Nϵ -(4-azidobenzoxycarbonyl)-l-δ,ϵ-dehydrolysine also improved the incorporation efficiency of these two noncanonical amino acids. As the three identified mutations were found in the N-terminal domain of PylRS that was separated from its catalytic domain for charging tRNAPyl with a noncanonical amino acid, they could potentially be introduced to all other PylRS mutants to improve the incorporation efficiency of their corresponding noncanonical amino acids. Therefore, it represents a general strategy to optimize the pyrrolysine incorporation system-based noncanonical amino-acid mutagenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.