Abstract
Our appreciation of the roles of non-coding RNAs, in particular microRNAs, in the manifestation of pulmonary hypertension (PH) has advanced considerably over the past decade. Comprised of small nucleotide sequences, microRNAs have demonstrated critical and broad regulatory roles in the pathogenesis of PH via the direct binding to messenger RNA transcripts for degradation or inhibition of translation, thereby exerting a profound influence on cellular activity. Yet, as inherently pleiotropic molecules, microRNAs have been difficult to study using traditional, reductionist approaches alone. With the advent of high-throughput -omics technologies and more advanced computational modelling, the study of microRNAs and their multi-faceted and complex functions in human disease serves as a fertile platform for the application of systems biology methodologies in combination with traditional experimental techniques. Here, we offer our viewpoint of past successes of systems biology in elucidating the otherwise hidden actions of microRNAs in PH, as well as areas for future development to integrate these strategies into the discovery of RNA pathobiology in this disease. We contend that such successful applications of systems biology in elucidating the functional architecture of microRNA regulation will further reveal the molecular mechanisms of disease, while simultaneously revealing potential diagnostic and therapeutic strategies in disease amelioration.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.