Abstract
Machine Learning techniques are routinely applied to Brain Computer Interfaces in order to learn a classifier for a particular user. However, research has shown that classification techniques perform better if the EEG signal is previously preprocessed to provide high quality attributes to the classifier. Spatial and frequency-selection filters can be applied for this purpose. In this paper, we propose to automatically optimize these filters by means of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The technique has been tested on data from the BCI-III competition, because both raw and manually filtered datasets were supplied, allowing to compare them. Results show that the CMA-ES is able to obtain higher accuracies than the datasets preprocessed by manually tuned filters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.