Abstract

ABSTRACT In its first encounter at solar distances as close as r = 0.16 au, Parker Solar Probe observed numerous local reversals, or inversions, in the heliospheric magnetic field (HMF), which were accompanied by large spikes in solar wind speed. Both solar and in situ mechanisms have been suggested to explain the existence of HMF inversions in general. Previous work using Helios 1, covering 0.3–1 au, observed inverted HMF to become more common with increasing r, suggesting that some heliospheric driving process creates or amplifies inversions. This study expands upon these findings, by analysing inversion-associated changes in plasma properties for the same large data set, facilitated by observations of ‘strahl’ electrons to identify the unperturbed magnetic polarity. We find that many inversions exhibit anticorrelated field and velocity perturbations, and are thus characteristically Alfvénic, but many also depart strongly from this relationship over an apparent continuum of properties. Inversions depart further from the ‘ideal’ Alfvénic case with increasing r, as more energy is partitioned in the field, rather than the plasma, component of the perturbation. This departure is greatest for inversions with larger density and magnetic field strength changes, and characteristic slow solar wind properties. We find no evidence that inversions that stray further from ‘ideal’ Alfvénicity have different generation processes from those which are more Alfvénic. Instead, different inversion properties could be imprinted based on transport or formation within different solar wind streams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call