Abstract

Abstract Sahel summertime precipitation declined from the 1950s to 1970s and recovered from the 1970s to 2000s. Anthropogenic aerosol contributions to this evolution are typically attributed to interhemispheric gradient changes of Atlantic Ocean sea surface temperature (SST). However recent work by Hirasawa et al. indicates a more complex picture, with the response being a combination of “fast” direct atmospheric (DA) processes and “slow” ocean-mediated (OM) processes. Here, we extend this understanding using the Community Atmosphere Model 5 to determine the role of regional ocean-basin perturbations and regional aerosol emission changes in the overall aerosol-driven OM and DA responses, respectively. From the 1950s to 1970s, there was an OM Sahel wetting response due to Pacific Ocean cooling that was offset by drying due to Atlantic cooling. By contrast, from the 1970s to 2000s, Atlantic trends reversed and amplified the Pacific cooling-induced wetting. This wetting was partially offset by drying driven by Indian Ocean cooling. Thus, the OM Sahel precipitation response to aerosol crucially depends on the balance of responses to Atlantic, Pacific, and Indian Ocean SST anomalies. From the 1950s to 1970s, there is DA Sahel drying that was principally due to North American aerosol emissions, with negligible effect from European emissions. DA drying from the 1970s to 2000s was mainly due to African aerosol emissions. Thus, the shifting roles of regional OM and DA effects reveal a complex interplay of direct driving and remote teleconnections in determining the time evolution of Sahel precipitation due to aerosol forcing in the late twentieth century. Significance Statement Studies of global climate models consistently indicate that anthropogenic aerosol emissions were a significant contributor to a severe drought that occurred in the Sahel region of Africa in the late twentieth century. The drying influence of aerosol forcing is the combined result of rapid atmospheric responses directly due to the forcing and slower responses due to forced ocean temperature changes. Using a set of simulations targeted at determining the influences from different ocean basins and different emission regions for two periods in the late twentieth century, we find there is a surprising range of mechanisms through which aerosol emissions affect the Sahel. This results in a complex interplay of at times competing and at times complementary regional influences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call