Abstract

The computational power of recurrent neural networks is intimately related to the nature of their synaptic weights. In particular, neural networks with static rational weights are known to be Turing equivalent, and recurrent networks with static real weights were proved to be super-Turing. Here, we study the computational power of a more biologically-oriented model where the synaptic weights can evolve rather than stay static. We prove that such evolving networks gain a super-Turing computational power, equivalent to that of static real-weighted networks, regardless of whether their synaptic weights are rational or real. These results suggest that evolution might play a crucial role in the computational capabilities of neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.