Abstract

We analyze the role of weak photospheric flux concentrations that evolve in a filament channel, in the triggering of dynamic changes in the shape of a filament. The high polarimetric sensitivity of THEMIS allowed us to detect weak flux concentrations (few Gauss) associated with the filament development. The synoptic instruments (MDI, SOLIS) even if their sensitivity is much less than THEMIS were useful to follow any subsequent strengthening of these flux concentrations after their identification in the THEMIS magnetograms. We found that (1) the northern part of the filament develops an Hα barb at the same time that weak minority polarity elements develop near a plage; (2) a section in the southern part of the Hα filament gradually disappears and later reforms at the same time that several mixed-polarity magnetic elements appear, then subsequently cancel or spread away from each other. These changes correspond to increases in EUV emission, as observed by TRACE, EIT, and CDS. This suggests that the plasma is temporarily heated along the filament spine. An idealized sequence of force-free models of this filament channel, based on plasma-supporting magnetic dips occurring in the windings of a very weakly twisted flux tube, naturally explains the evolution of its southern part as being due to changes in the topology of the coronal magnetic field as the photospheric flux concentrations evolve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.