Abstract

AbstactCounterfeiting remains a significant threat, causing economic and safety concerns. Addressing this, authentication technologies have gained traction. With the rise of the Internet of Things, authentication is crucial. Photonic Physical Unclonable Functions (PUFs) offer unique identifiers. We present low‐cost and sustainable e‐tags that may be printed virtually on any surface for authentication due to the bespoke texturization of sustainable inks of surface‐modified carbon dots. A single e‐tag provides randomized phosphorescence (or afterglow) patterns, which provide multiple layers of safety by exploiting different patterning, excitation energies, and temporal characteristics. A comprehensive case study employing photonic challenge‐response pairs, involving a sample size of up to 29 emission spectra in combination with 102 photographs taken with a smartphone, displays a low authentication probability of error (<10−11), which supports the potential of our combined approach toward the development of more robust photonic PUF systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.