Abstract

Adapting game content to a particular player's needs and expertise constitutes an important aspect in game design. Most research in this direction has focused on adapting game difficultyto keep the player engaged in the game. Dynamic difficulty adjustment, however, focuses on one aspect of the gameplay experience by adjusting the content to increase ordecrease perceived challenge. In this paper, we introduce a method for automatic level generation for the platform game Super Mario Bros using grammatical evolution. The grammatical evolution-based level generator is used to generate player-adapted content by employing an adaptation mechanism as a fitness function in grammatical evolution to optimizethe player experience of three emotional states: engagement, frustration and challenge. The fitness functions used are models of player experience constructed in our previous work from crowd-sourced gameplay data collected from over 1500 game sessions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.