Abstract

The paper studies the application of evolutionary artificial neural networks to chlorophyll-a prediction in Lake Kasumigaura (in Japan). Unlike previous applications of artificial neural networks in this field, the architecture of the artificial neural network is evolved automatically rather than designed manually. The evolutionary system is able to find a near optimal architecture of the artificial neural network for the prediction task. Our experimental results have shown that evolved artificial neural networks are very compact and generalise well. The evolutionary system is able to explore a large space of possible artificial neural networks and discover novel artificial neural networks for solving a problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.