Abstract

The metacommunity framework predicts that local coexistence depends on the outcome of local species interactions and regional migration. In analogous fashion, spatial structure among populations can shape species interactions through evolutionary mechanisms. Yet, most metacommunity theories assume that populations do not evolve. Here, we evaluate how evolution shapes local species coexistence and exclusion within the multiscale and multispecies context embodied by the metacommunity framework. In general, coexistence in joint ecological-evolutionary models requires low to intermediate dispersal rates that can promote maintenance of both regional species and genetic diversity. These conditions support a set of key mechanisms that modify patterns of species coexistence including local adaptation, gene storage effects, genetic rescue effects, spatial genetic subsidies, and metacommunity evolution. Multispecies extensions indicate that correlated selection can further alter the outcome of interspecific interactions depending on the magnitude and direction of correlations and shape of fitness trade-offs. We suggest that an evolving metacommunity perspective has the potential to generate novel predictions about community structure and function by incorporating the genetic and species diversity that characterize natural communities. In adopting such a perspective, we seek to facilitate understanding about the interactions between evolutionary and metacommunity dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.