Abstract
Differential cell adhesion, mediated by e.g. integrin and cadherins/catenines, plays an important role in morphogenesis and it has been shown that there is intimate cross-talk between their expression and modification, and inter-cellular signalling, cell differentiation, cell growth and apoptosis. In this paper, we introduce and use a formal model to explore the morphogenetic potential of the interplay between these processes. We demonstrate the formation of interesting morphologies. Initiated by cell differentiation, differential cell adhesion leads to a long transient of cell migrations, e.g. engulfing and intercalation of cells and cell layers. This transient can be sustained dynamically by further cell differentiation, and by cell growth/division and cell death which are triggered by the (also long range) forces (stretching and squeezing) generated by the cell adhesion. We study the interrelation between modes of cell differentiation and modes of morphogenesis. We use an evolutionary process to zoom in on gene-regulation networks which lead to cell differentiation. Morphogenesis is not selected for but appears as a side-effect. The evolutionary dynamics shows the hallmarks of evolution on a rugged landscape, including long neutral paths. We show that a combinatorially large set of morphologies occurs in the vicinity of a neutral path which sustains cell differentiation. Thus, an almost linear molecular phylogeny gives rise to mosaic evolution on the morphological level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.